

Étude ab initio du conducteur protonique BaSnO₃

Emile Bévillon, Grégory Géneste, Guilhem Dezanneau, Anthony Chesnaud, Yanzhong Wang

Partie 1 : Étude de l'hydratation de BaSnO₃

- 1. Préliminaires théoriques
- 2. Énergie d'hydratation

Partie 2 : Étude de la conductivité de BaSnO₃

- 1. Préliminaires théoriques
- 2. Coefficient de diffusion

De bonnes propriétés d'hydratation et de conduction protonique.

 $Baln_{0,5}Sn_{0,5}O_{2,75} (BISO) \qquad Ba_2YSnO_{5,5} (BYSO)$ $\Delta H_h = -0,76 \, eV \qquad \Delta H_h = -1,00 \, eV$

Étude théorique et expérimentale systématique de ces propriétés, afin de déterminer l'influence des dopants.

T. Schober, Solid State Ionics, **109** (1998) 1-1₃1. Murugaraj *et al*, Solid State Ionics, **98** (1997) 1-11.

Introduction -Les propriétés-

Une bonne conduction protonique est assurée par des valeurs élevées de ces propriétés Code : Abinit Méthodes : DFT, DFPT Fonctionnelle GGA PBE Pseudopotentiels : type Troullier-Martins

- Calcul à l'échelle atomique
- Système périodique pour les solides
- Nécessité de grandes mailles
- --> utilisation de supercellulles 2x2x2, chargées

Partie 1 : Étude de l'hydratation de BaSnO₃

Interactions dopants défauts négligées

Calculs sur mailles chargées contenant un défaut

M. E. Bjorketun et al, Faraday Discuss., (2007), 245-265

Total Trapping Model (TTM)

Interactions dopants défauts prises en compte

Calculs sur mailles chargées contenant deux défauts --> configurations multiples

NTM model:

Interactions dopant-défauts négligées. $\Delta E_{h}^{NTM} = C - A$

TTM model: Interactions dopant-défauts prises en compte $\Delta E_h^{TTM} = D - B$

1. Énergie d'hydratation; a. Énergies d'interactions

	Interactions dopant lacune (eV)			Interactions dopant proton (eV)				
Dop Disp	POS1	POS2	POS3	POS1	POS2	POS3	POS4	
Ga	-2,92	-1,70	-1,59	-2,31	-0,45	-0,02	-0,20	
In	-0,16	-0,06	0,10	0,04	0,06	0,15	0,15	
Gd	-2,38	-1,75	-1,77	-0,50	-0,71	-0,47	-0,45	
Sm	-2,03	-2,11	-2,01	-0,58	-0,62	-0,52	-0,49	
La	-1,47	-1,54	-0,79	-0,31	-0,81	-0,44	-0,26	

En règle générale, toutes les interactions sont attractives. Des valeurs élevées par rapport à BaZrO₃ Dop-Vac [-0,3, -0,9]; Dop-H [-0,1, -0,4]

M. E. Bjorketun et al, Faraday Discuss., (2007), 245-265

1. Énergie d'hydratation; a. Énergies d'interactions

	Interactions dopant lacune (eV)			Interactions dopant proton (eV)			
Dop Disp	POS1	POS2	POS3	POS1	POS2	POS3	POS4
Ga	-2,92	-1,70	-1,59	-2,31	-0,45	-0,02	-0,20
In	-0,16	-0,06	0,10	0,04	0,06	0,15	0,15

Ga : dopant en dehors du site (POS1). Courant dans les perovskites avec petit dopant (SCT, KTL...)

In : dopant proche de Sn, on a des valeurs faibles et positives (Dop-H).

1. Énergie d'hydratation; a. Énergies d'interactions

	Interactions dopant lacune (eV)			Interactions dopant proton (eV)			
Dop Disp	POS1	POS2	POS3	POS1	POS2	POS3	POS4
Gd	-2,38	-1,75	-1,77	-0,50	-0,71	-0,47	-0,45
Sm	-2,03	-2,11	-2,01	-0,58	-0,62	-0,52	-0,49
La	-1,47	-1,54	-0,79	-0,31	-0,81	-0,44	-0,26

En règle générale, POS2 > POS1.

POS2 > POS1, recouvrement d'interactions ou effet structurel?

Recouvrement d'interactions ou disposition structurale particulière?

Kreuer, Solid State Ionics, 125, (1999), 285

	Énergies			
Dop Disp	POS1> POS1			
Aucun (NTM)				
Ga	-2,66			
In	-0,72	-0,72	-0,76	BISO
Gd	0,41	0,00		
Sm	-0,10	-0,10		
La	-0,13	-1,05		

T. Schober, Solid State Ionics, **109** (1998) 1-11.

Partie 2 : Étude de la conductivité de BaSnO₃

1. Préliminaires théoriques

Le modèle de Vineyard :

$$D_{(T)} = a^2 \mathcal{V} e^{(-E_a/k_b T)}$$

Coefficient de diffusion

G. H. Vineyard, J. Phys. Chem. Sol., 3, 1-2, (1957), 121-127

	Énergie d'activation (eV)				Fréquence d'attaque (Cm ⁻¹)			
Dop Saut	1> 1	2> 2	3> 3	4> 4	1> 1	2> 2	3> 3	4>4
Aucun	0,36				1071			
Ga	0,37	0,84	0,38	0,32	580	1309	1097	1112
In	0,39	0,42	0,37	0,37	1139	1129	1079	1085
Gd	0,51	0,63	0,43	0,41	1173	1281	1043	1079
Sm	na	0,40	na	0,39	na	1223	na	na
La	0,64	0,65	0,42	0,49	1241	1274	1099	1141

Fréquences d'attaques homogènes Le saut 2 --> 2 est le plus limitant

2. Coefficient de diffusion; b. Graphiques

Le plus limitant, mais pas que ce type de saut. Il reste à élucider l'impact des images du dopant sur ces résultats. Nous avons déterminer des énergies d'hydratation ainsi que des coefficients de diffusion.

Mais des incertitudes résident dans l'effet des dopants images :

- interaction dopant proton en POS2 supérieure à celle en POS1,
- effet inconnu sur les coefficients de diffusion obtenu.
 Des calculs vont être réalisés sur de plus larges cellules (3x3x3).

Reste à affiner les modèles utilisés, d'où la nécessité de comparer aux données expérimentales

Des expérimentations sont menées sur BaSnO₃ en parallèle par un autre doctorant : Yanzhong Wang.

Merci pour votre attention