Étude théorique du composé BaSnO₃ pur et dopé

Emile Bévillon, Grégory Géneste, Guilhem Dezanneau Anthony Chesnaud, Yanzhong Wang

Laboratoire Structure et Propriétés et Modélisation des Solides

Sommaire

Présentation générale

Partie 1 : Étude du composé BaSnO₃ pur

Partie 2 : Étude du composé BaSnO₃ dopé

Conclusion et perspectives

Présentation générale

La pile à combustible

Étude de matériaux conducteurs protoniques

Quelques exemples de conducteurs protoniques

 $H_2O(g) + V_o + O_o^X \implies 2(OH_o)$

 Étude du composé BaSnO₃ pressenti conducteur protonique Murugaraj *et al*, Solid State Ionics **98** (1997), 1-6 Schober, Solid State Ionics **109** (1998), 1-11

Calculs effectués avec le logiciel Abinit

Méthodes : DFT, DFPT

Fonctionnelle GGA PBE

Pseudopotentiels : type Troullier-Martins

Électrons de valence : O $2s^2 2p^4$; Sn $5s^2 5p^2$; Ba $5s^2 5p^6 6s^2$

Maillage de la Zone de Brillouin : 6 x 6 x 6

Énergie de cut off des ondes planes : 50 Hartree

Partie 1 :

Étude du composé BaSnO₃ pur à 0 K

1) Matériau à P = 0 Pa

2) Matériau sous contraintes, avec P = [0 - 650] GPa

1) Matériau à P = 0 Pa

	Calcul (GGA)	Expérimental	Ecart
Paramètre de maille (Å)	4,156	4,116 ⁽¹⁾	1%
Module de Young (GPa)	207	244 ⁽²⁾	18%
Module de cisaillement (GPa)	84	100 ⁽²⁾	16%
Coefficient de Poisson	0,23	0,22 ⁽²⁾	5%
(1) G Dezanneau <i>et al</i> SPMS	•	· /	

(2) T. Maekawa et al, Journal of Alloys and Compounds (2005), 13066

			Effective de Born		
	Formelle	Bader ⁽³⁾	Z*	Ζ*	Z*
			XX	уу	
Ba	+11	1,6	2,7	2,7	2,7
Sn	НV	2,4	4,4	4,4	4,4
01	-11	-1,3	-1,9	-1,9	-3,4
(2) D. W. Badar, Chamical Bayiaw 04 (1001) 802					

(3) R. W. Bader, Chemical Review 91 (1991) 893

 $Z_{\alpha\beta}^{*(i)} = \Omega_0 \cdot \frac{\delta P_\beta}{\delta x_{\alpha}^{(i)}}$ $\epsilon_s = 22,3$ $\epsilon_{\infty} = 4,8$

Courbe de dispersion de phonons

Pas de fréquences imaginaires, donc pas d'instabilités prédites

Diagramme de diffraction des RX à 10 K

Indexé dans une maille cubique de paramètre de maille 4,116 Å.

G. Dezanneau, et al, SPMS

2) Matériau sous contraintes, avec P = [0 - 650] GPa

Publications récentes traitant de la réapparition de la ferroélectricité sous pression (40 - 140 GPa) dans des matériaux perovskite (titanates^(1,2)). Étude BiAIO₃; MgSiO₃ (jusqu'à 800 GPa⁽¹⁾) I. A. Kornev *et al*, Physical Review Letters (2005), 196804-1

P. Ghosez et al, Physical Review B 74 (2006), 180101(R)

Absence d'études publiées sur BaSnO₃

Fréquences et charges effectives des modes TO (en Gamma)

Décomposition de la charge effective

Charges effectives de Born et déplacement propre du mode TO1

Quel moyens mettre en oeuvre pour une validation expérimentale? ¹⁴

Par la mesure de la constante diélectrique sous pression

Sous condition d'absence d'autres distortions Ou mesures directes des modes (Raman, IR)

15

Partie 2 :

Étude du composé BaSnO₃ dopé

Dopage <=> faible concentration

Hypothèse : concentration si faible que les interactions sont négligeables

1) Estimation de l'énergie d'hydratation (aspect thermodynamique)

2) Estimation de la conduction protonique (aspect cinétique)

1) Estimation de l'énergie d'hydratation

 $\longrightarrow \Delta H^{\circ}$ obtenu en faisant le différentiel des énergies calculées

	BaSnO ₃	$Ba_2YSnO_{5,5}^{(1)}$	$Baln_{0,5}Sn_{0,5}O_{2,75}^{(2)}$
Δ H° (eV)	-0,96	-1,00	-0,76
Δ S° (J.mol ⁻¹ .K ⁻¹)		-73	-122

(1) Murugaraj *et al*, Solid State Ionics **98** (1997), 1-6

(2) T. Schober, Solid State Ionics 109 (1998), 1-11

Isobare d'hydratation ($P_{H2O} = 0,02$ bar; [S] = 1%)

2) Estimation de la conduction protonique

Hypothèse : le déplacement par saut d'un oxygène à son voisin est le facteur limitant.

 $D_{(T)} = a^2 \mathcal{V} e^{(-E_a/k_bT)}$

H en position stableH en position de col

Données déterminées par le calcul (GGA)			
a (Å)	2,94		
E _a (eV)	0,36		
Fréquences calculées			
Position :	col	stable	
V ₁ (cm ⁻¹)	-1135	853 (Bending)	
V_{2} (cm ⁻¹)	1362	921 (Bending)	
$V_{_{3}}(cm^{-1})$	1755	3261 (Stretching)	
V (cm ⁻¹)	1071		

Coefficient de diffusion déterminé

 $D_{(T)} = a^2 \mathcal{V} e^{(-E_a/k_bT)}$

Coefficient diffusion en fonction de la température

22

$$\sigma_{(T)} = \frac{D_{(T)} z^2 e^2 c_{(T)}}{k_b T}$$

Conductivité en fonction de la température ([S] = 1%)

$$\sigma_{(T)} = \frac{D_{(T)} z^2 e^2 c_{(T)}}{k_b T}$$

Conductivité en fonction de la température ($\Delta S_{\mu}^{\circ} = -100 \text{ J.mol}^{-1}$

 σ T en fonction de la température (P_{H20} = 0,02 bar ; [S] = 1%)

 σ T en fonction de la température (P_{H20} = 0,02 bar ; Δ S_H° = -100 J.mol⁻¹.K⁻¹)

Conclusion

BaSnO₃ pur :

- Bon accord général entre théorie et expérience.

$BaSnO_3$ sous pression :

- Prédiction d'une instabilité ferroélectrique au point Gamma à 240 GPa.

BaSnO₃ dopé :

- Estimation de l'énergie d'hydratation et de la conductivité protonique du

matériau.

Perspectives :

BaSnO₃ sous pression :

- Étude de phases tiltées et prédiction des transitions de phase.

BaSnO₃ dopé :

- Détermination du paramètre entropique
- Affinement du modèle en incluant des interactions avec le dopant
- Étude comparative de dopants TR, La, Y, Sc, Ga, In...

Provenance des résultats

Institut du Développement et des Ressources en Informatique Scientifique

Barcelona Super-Computing center

Ma station de travail à l'école

